A Multi-Scale Approach for Graph Link Prediction

Author:

Cai Lei,Ji Shuiwang

Abstract

Deep models can be made scale-invariant when trained with multi-scale information. Images can be easily made multi-scale, given their grid-like structures. Extending this to generic graphs poses major challenges. For example, in link prediction tasks, inputs are represented as graphs consisting of nodes and edges. Currently, the state-of-the-art model for link prediction uses supervised heuristic learning, which learns graph structure features centered on two target nodes. It then learns graph neural networks to predict the existence of links based on graph structure features. Thus, the performance of link prediction models highly depends on graph structure features. In this work, we propose a novel node aggregation method that can transform the enclosing subgraph into different scales and preserve the relationship between two target nodes for link prediction. A theory for analyzing the information loss during the re-scaling procedure is also provided. Graphs in different scales can provide scale-invariant information, which enables graph neural networks to learn invariant features and improve link prediction performance. Our experimental results on 14 datasets from different areas demonstrate that our proposed method outperforms the state-of-the-art methods by employing multi-scale graphs without additional parameters.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Towards explaining graph neural networks via preserving prediction ranking and structural dependency;Information Processing & Management;2024-03

2. Preserving Potential Neighbors for Low-Degree Nodes via Reweighting in Link Prediction;Neural Information Processing;2023-11-15

3. JAMES: Normalizing Job Titles with Multi-Aspect Graph Embeddings and Reasoning;2023 IEEE 10th International Conference on Data Science and Advanced Analytics (DSAA);2023-10-09

4. Using DeepWalk to Link Prediction in Subgraph;2023 18th International Workshop on Semantic and Social Media Adaptation & Personalization (SMAP)18th International Workshop on Semantic and Social Media Adaptation & Personalization (SMAP 2023);2023-09-25

5. A comprehensive survey of link prediction methods;The Journal of Supercomputing;2023-09-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3