When Low Resource NLP Meets Unsupervised Language Model: Meta-Pretraining then Meta-Learning for Few-Shot Text Classification (Student Abstract)

Author:

Deng Shumin,Zhang Ningyu,Sun Zhanlin,Chen Jiaoyan,Chen Huajun

Abstract

Text classification tends to be difficult when data are deficient or when it is required to adapt to unseen classes. In such challenging scenarios, recent studies have often used meta-learning to simulate the few-shot task, thus negating implicit common linguistic features across tasks. This paper addresses such problems using meta-learning and unsupervised language models. Our approach is based on the insight that having a good generalization from a few examples relies on both a generic model initialization and an effective strategy for adapting this model to newly arising tasks. We show that our approach is not only simple but also produces a state-of-the-art performance on a well-studied sentiment classification dataset. It can thus be further suggested that pretraining could be a promising solution for few-shot learning of many other NLP tasks. The code and the dataset to replicate the experiments are made available at https://github.com/zxlzr/FewShotNLP.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multi-task convex combination interpolation for meta-learning with fewer tasks;Knowledge-Based Systems;2024-07

2. IDoFew: Intermediate Training Using Dual-Clustering in Language Models for Few Labels Text Classification;Proceedings of the 17th ACM International Conference on Web Search and Data Mining;2024-03-04

3. Metric-Free Learning Network with Dual Relations Propagation for Few-Shot Aspect Category Sentiment Analysis;Transactions of the Association for Computational Linguistics;2024

4. Cross-Lingual Zero-Shot and Few-Shot Learning to Hate Speech Detection;2024

5. Boosting Text Classification Performance for Unlabeled Data with Semi-Supervised Learning;2023 IEEE 9th International Women in Engineering (WIE) Conference on Electrical and Computer Engineering (WIECON-ECE);2023-11-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3