Question-Driven Purchasing Propensity Analysis for Recommendation

Author:

Chen Long,Guan Ziyu,Xu Qibin,Zhang Qiong,Sun Huan,Lu Guangyue,Cai Deng

Abstract

Merchants of e-commerce Websites expect recommender systems to entice more consumption which is highly correlated with the customers' purchasing propensity. However, most existing recommender systems focus on customers' general preference rather than purchasing propensity often governed by instant demands which we deem to be well conveyed by the questions asked by customers. A typical recommendation scenario is: Bob wants to buy a cell phone which can play the game PUBG. He is interested in HUAWEI P20 and asks “can PUBG run smoothly on this phone?” under it. Then our system will be triggered to recommend the most eligible cell phones to him. Intuitively, diverse user questions could probably be addressed in reviews written by other users who have similar concerns. To address this recommendation problem, we propose a novel Question-Driven Attentive Neural Network (QDANN) to assess the instant demands of questioners and the eligibility of products based on user generated reviews, and do recommendation accordingly. Without supervision, QDANN can well exploit reviews to achieve this goal. The attention mechanisms can be used to provide explanations for recommendations. We evaluate QDANN in three domains of Taobao. The results show the efficacy of our method and its superiority over baseline methods.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Contrastive Proxy Kernel Stein Path Alignment for Cross-Domain Cold-Start Recommendation;IEEE Transactions on Knowledge and Data Engineering;2023-11-01

2. Graph Embedding with Similarity Metric Learning;Symmetry;2023-08-21

3. Context-sensitive graph representation learning;International Journal of Machine Learning and Cybernetics;2023-01-05

4. Question-Attentive Review-Level Recommendation Explanation;2022 IEEE International Conference on Big Data (Big Data);2022-12-17

5. Few-Shot Text Classification via Semi-Supervised Contrastive Learning;2022 4th International Conference on Natural Language Processing (ICNLP);2022-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3