Latent Relation Language Models

Author:

Hayashi Hiroaki,Hu Zecong,Xiong Chenyan,Neubig Graham

Abstract

In this paper, we propose Latent Relation Language Models (LRLMs), a class of language models that parameterizes the joint distribution over the words in a document and the entities that occur therein via knowledge graph relations. This model has a number of attractive properties: it not only improves language modeling performance, but is also able to annotate the posterior probability of entity spans for a given text through relations. Experiments demonstrate empirical improvements over both word-based language models and a previous approach that incorporates knowledge graph information. Qualitative analysis further demonstrates the proposed model's ability to learn to predict appropriate relations in context. 1

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Give us the Facts: Enhancing Large Language Models With Knowledge Graphs for Fact-Aware Language Modeling;IEEE Transactions on Knowledge and Data Engineering;2024-07

2. FluGCF: A Fluent Dialogue Generation Model With Coherent Concept Entity Flow;IEEE/ACM Transactions on Audio, Speech, and Language Processing;2024

3. Modeling Spoken Information Queries for Virtual Assistants: Open Problems, Challenges and Opportunities;Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval;2023-07-18

4. TCKGE: Transformers with contrastive learning for knowledge graph embedding;International Journal of Multimedia Information Retrieval;2022-11-27

5. Sentence Graph Attention for Content-Aware Summarization;Applied Sciences;2022-10-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3