Practical Federated Gradient Boosting Decision Trees

Author:

Li Qinbin,Wen Zeyi,He Bingsheng

Abstract

Gradient Boosting Decision Trees (GBDTs) have become very successful in recent years, with many awards in machine learning and data mining competitions. There have been several recent studies on how to train GBDTs in the federated learning setting. In this paper, we focus on horizontal federated learning, where data samples with the same features are distributed among multiple parties. However, existing studies are not efficient or effective enough for practical use. They suffer either from the inefficiency due to the usage of costly data transformations such as secure sharing and homomorphic encryption, or from the low model accuracy due to differential privacy designs. In this paper, we study a practical federated environment with relaxed privacy constraints. In this environment, a dishonest party might obtain some information about the other parties' data, but it is still impossible for the dishonest party to derive the actual raw data of other parties. Specifically, each party boosts a number of trees by exploiting similarity information based on locality-sensitive hashing. We prove that our framework is secure without exposing the original record to other parties, while the computation overhead in the training process is kept low. Our experimental studies show that, compared with normal training with the local data of each party, our approach can significantly improve the predictive accuracy, and achieve comparable accuracy to the original GBDT with the data from all parties.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 87 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3