DeGAN: Data-Enriching GAN for Retrieving Representative Samples from a Trained Classifier

Author:

Addepalli Sravanti,Nayak Gaurav Kumar,Chakraborty Anirban,Radhakrishnan Venkatesh Babu

Abstract

In this era of digital information explosion, an abundance of data from numerous modalities is being generated as well as archived everyday. However, most problems associated with training Deep Neural Networks still revolve around lack of data that is rich enough for a given task. Data is required not only for training an initial model, but also for future learning tasks such as Model Compression and Incremental Learning. A diverse dataset may be used for training an initial model, but it may not be feasible to store it throughout the product life cycle due to data privacy issues or memory constraints. We propose to bridge the gap between the abundance of available data and lack of relevant data, for the future learning tasks of a given trained network. We use the available data, that may be an imbalanced subset of the original training dataset, or a related domain dataset, to retrieve representative samples from a trained classifier, using a novel Data-enriching GAN (DeGAN) framework. We demonstrate that data from a related domain can be leveraged to achieve state-of-the-art performance for the tasks of Data-free Knowledge Distillation and Incremental Learning on benchmark datasets. We further demonstrate that our proposed framework can enrich any data, even from unrelated domains, to make it more useful for the future learning tasks of a given network.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhancing Data-Free Model Stealing Attack on Robust Models;2024 International Joint Conference on Neural Networks (IJCNN);2024-06-30

2. Topographic knowledge-aware network for automatic small-scale impact crater detection from lunar digital elevation models;International Journal of Applied Earth Observation and Geoinformation;2024-05

3. A Prescriptive Model for Failure Analysis in Ship Machinery Monitoring Using Generative Adversarial Networks;Journal of Marine Science and Engineering;2024-03-15

4. DFDS: Data-Free Dual Substitutes Hard-Label Black-Box Adversarial Attack;Lecture Notes in Computer Science;2024

5. Improving Diversity in Black-Box Few-Shot Knowledge Distillation;Lecture Notes in Computer Science;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3