Feedback-Based Self-Learning in Large-Scale Conversational AI Agents

Author:

Ponnusamy Pragaash,Roshan Ghias Alireza,Guo Chenlei,Sarikaya Ruhi

Abstract

Today, most of the large-scale conversational AI agents such as Alexa, Siri, or Google Assistant are built using manually annotated data to train the different components of the system including Automatic Speech Recognition (ASR), Natural Language Understanding (NLU) and Entity Resolution (ER). Typically, the accuracy of the machine learning models in these components are improved by manually transcribing and annotating data. As the scope of these systems increase to cover more scenarios and domains, manual annotation to improve the accuracy of these components becomes prohibitively costly and time consuming. In this paper, we propose a system that leverages customer/system interaction feedback signals to automate learning without any manual annotation. Users of these systems tend to modify a previous query in hopes of fixing an error in the previous turn to get the right results. These reformulations, which are often preceded by defective experiences caused by either errors in ASR, NLU, ER or the application. In some cases, users may not properly formulate their requests (e.g. providing partial title of a song), but gleaning across a wider pool of users and sessions reveals the underlying recurrent patterns. Our proposed self-learning system automatically detects the errors, generate reformulations and deploys fixes to the runtime system to correct different types of errors occurring in different components of the system. In particular, we propose leveraging an absorbing Markov Chain model as a collaborative filtering mechanism in a novel attempt to mine these patterns. We show that our approach is highly scalable, and able to learn reformulations that reduce Alexa-user errors by pooling anonymized data across millions of customers. The proposed self-learning system achieves a win-loss ratio of 11.8 and effectively reduces the defect rate by more than 30% on utterance level reformulations in our production A/B tests. To the best of our knowledge, this is the first self-learning large-scale conversational AI system in production.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modeling the impact of out-of-schema questions in task-oriented dialog systems;Data Mining and Knowledge Discovery;2024-06-04

2. A Self-Learning Framework for Large-Scale Conversational AI Systems;IEEE Computational Intelligence Magazine;2024-05

3. Robust Training for Conversational Question Answering Models with Reinforced Reformulation Generation;Proceedings of the 17th ACM International Conference on Web Search and Data Mining;2024-03-04

4. Federated Self-Learning with Weak Supervision for Speech Recognition;ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP);2023-06-04

5. A Knowledge-Grounded Task-Oriented Dialogue System with Hierarchical Structure for Enhancing Knowledge Selection;Sensors;2023-01-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3