Learning Sparse Sharing Architectures for Multiple Tasks

Author:

Sun Tianxiang,Shao Yunfan,Li Xiaonan,Liu Pengfei,Yan Hang,Qiu Xipeng,Huang Xuanjing

Abstract

Most existing deep multi-task learning models are based on parameter sharing, such as hard sharing, hierarchical sharing, and soft sharing. How choosing a suitable sharing mechanism depends on the relations among the tasks, which is not easy since it is difficult to understand the underlying shared factors among these tasks. In this paper, we propose a novel parameter sharing mechanism, named Sparse Sharing. Given multiple tasks, our approach automatically finds a sparse sharing structure. We start with an over-parameterized base network, from which each task extracts a subnetwork. The subnetworks of multiple tasks are partially overlapped and trained in parallel. We show that both hard sharing and hierarchical sharing can be formulated as particular instances of the sparse sharing framework. We conduct extensive experiments on three sequence labeling tasks. Compared with single-task models and three typical multi-task learning baselines, our proposed approach achieves consistent improvement while requiring fewer parameters.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Improving AI-assisted video editing: Optimized footage analysis through multi-task learning;Neurocomputing;2024-12

2. TGGS network: A multi-task learning network for gradient-guided knowledge sharing;Knowledge-Based Systems;2024-10

3. Multi-source domain adaptation for dependency parsing via domain-aware feature generation;International Journal of Machine Learning and Cybernetics;2024-09-02

4. UNITE: Multitask Learning With Sufficient Feature for Dense Prediction;IEEE Transactions on Systems, Man, and Cybernetics: Systems;2024-08

5. MoME: Mixture-of-Masked-Experts for Efficient Multi-Task Recommendation;Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval;2024-07-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3