An Annotation Sparsification Strategy for 3D Medical Image Segmentation via Representative Selection and Self-Training

Author:

Zheng Hao,Zhang Yizhe,Yang Lin,Wang Chaoli,Chen Danny Z.

Abstract

Image segmentation is critical to lots of medical applications. While deep learning (DL) methods continue to improve performance for many medical image segmentation tasks, data annotation is a big bottleneck to DL-based segmentation because (1) DL models tend to need a large amount of labeled data to train, and (2) it is highly time-consuming and label-intensive to voxel-wise label 3D medical images. Significantly reducing annotation effort while attaining good performance of DL segmentation models remains a major challenge. In our preliminary experiments, we observe that, using partially labeled datasets, there is indeed a large performance gap with respect to using fully annotated training datasets. In this paper, we propose a new DL framework for reducing annotation effort and bridging the gap between full annotation and sparse annotation in 3D medical image segmentation. We achieve this by (i) selecting representative slices in 3D images that minimize data redundancy and save annotation effort, and (ii) self-training with pseudo-labels automatically generated from the base-models trained using the selected annotated slices. Extensive experiments using two public datasets (the HVSMR 2016 Challenge dataset and mouse piriform cortex dataset) show that our framework yields competitive segmentation results comparing with state-of-the-art DL methods using less than ∼20% of annotated data.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3