Adaptive Unimodal Cost Volume Filtering for Deep Stereo Matching

Author:

Zhang Youmin,Chen Yimin,Bai Xiao,Yu Suihanjin,Yu Kun,Li Zhiwei,Yang Kuiyuan

Abstract

State-of-the-art deep learning based stereo matching approaches treat disparity estimation as a regression problem, where loss function is directly defined on true disparities and their estimated ones. However, disparity is just a byproduct of a matching process modeled by cost volume, while indirectly learning cost volume driven by disparity regression is prone to overfitting since the cost volume is under constrained. In this paper, we propose to directly add constraints to the cost volume by filtering cost volume with unimodal distribution peaked at true disparities. In addition, variances of the unimodal distributions for each pixel are estimated to explicitly model matching uncertainty under different contexts. The proposed architecture achieves state-of-the-art performance on Scene Flow and two KITTI stereo benchmarks. In particular, our method ranked the 1st place of KITTI 2012 evaluation and the 4th place of KITTI 2015 evaluation (recorded on 2019.8.20). The codes of AcfNet are available at: https://github.com/youmi-zym/AcfNet.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 85 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Robust Depth Estimation Based on Parallax Attention for Aerial Scene Perception;IEEE Transactions on Industrial Informatics;2024-09

2. Multi-Scale Binocular Stereo Matching Based on Semantic Association;Chinese Journal of Electronics;2024-07

3. Measuring and Modeling Uncertainty Degree for Monocular Depth Estimation;IEEE Transactions on Circuits and Systems for Video Technology;2024-07

4. Multi-scale Adaptive Region Matching Network for 3D Reconstruction;2024 International Conference on Machine Intelligence and Digital Applications;2024-05-30

5. Exploring the Usage of Pre-trained Features for Stereo Matching;International Journal of Computer Vision;2024-05-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3