JEC-QA: A Legal-Domain Question Answering Dataset

Author:

Zhong Haoxi,Xiao Chaojun,Tu Cunchao,Zhang Tianyang,Liu Zhiyuan,Sun Maosong

Abstract

We present JEC-QA, the largest question answering dataset in the legal domain, collected from the National Judicial Examination of China. The examination is a comprehensive evaluation of professional skills for legal practitioners. College students are required to pass the examination to be certified as a lawyer or a judge. The dataset is challenging for existing question answering methods, because both retrieving relevant materials and answering questions require the ability of logic reasoning. Due to the high demand of multiple reasoning abilities to answer legal questions, the state-of-the-art models can only achieve about 28% accuracy on JEC-QA, while skilled humans and unskilled humans can reach 81% and 64% accuracy respectively, which indicates a huge gap between humans and machines on this task. We will release JEC-QA and our baselines to help improve the reasoning ability of machine comprehension models. You can access the dataset from http://jecqa.thunlp.org/.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. LAWSUIT: a LArge expert-Written SUmmarization dataset of ITalian constitutional court verdicts;Artificial Intelligence and Law;2024-09-09

2. A Dynamic Retrieval-Augmented Generation Framework for Border Inspection Legal Question Answering;2024 International Conference on Asian Language Processing (IALP);2024-08-04

3. TriviaHG: A Dataset for Automatic Hint Generation from Factoid Questions;Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval;2024-07-10

4. LogSay: An Efficient Comprehension System for Log Numerical Reasoning;IEEE Transactions on Computers;2024-07

5. AI-Powered Legal Documentation Assistant;2024 4th International Conference on Pervasive Computing and Social Networking (ICPCSN);2024-05-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3