Author:
Chen Lisi,Shang Shuo,Yao Bin,Li Jing
Abstract
Pricing is essential in optimizing transportation resource allocation. Congestion pricing is widely used to reduce urban traffic congestion. We propose and investigate a novel Dynamic Pricing Strategy (DPS) to price travelers' trips in intelligent transportation platforms (e.g., DiDi, Lyft, Uber). The trips are charged according to their “congestion contributions” to global urban traffic systems. The dynamic pricing strategy retrieves a matching between n travelers' trips and the potential travel routes (each trip has k potential routes) to minimize the global traffic congestion. We believe that DPS holds the potential to benefit society and the environment, such as reducing traffic congestion and enabling smarter and greener transportation. The DPS problem is challenging due to its high computation complexity (there exist kn matching possibilities). We develop an efficient and effective approximate matching algorithm based on local search, as well as pruning techniques to further enhance the matching efficiency. The accuracy and efficiency of the dynamic pricing strategy are verified by extensive experiments on real datasets.
Publisher
Association for the Advancement of Artificial Intelligence (AAAI)
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献