Multi-Instance Multi-Label Action Recognition and Localization Based on Spatio-Temporal Pre-Trimming for Untrimmed Videos

Author:

Zhang Xiao-Yu,Shi Haichao,Li Changsheng,Li Peng

Abstract

Weakly supervised action recognition and localization for untrimmed videos is a challenging problem with extensive applications. The overwhelming irrelevant background contents in untrimmed videos severely hamper effective identification of actions of interest. In this paper, we propose a novel multi-instance multi-label modeling network based on spatio-temporal pre-trimming to recognize actions and locate corresponding frames in untrimmed videos. Motivated by the fact that person is the key factor in a human action, we spatially and temporally segment each untrimmed video into person-centric clips with pose estimation and tracking techniques. Given the bag-of-instances structure associated with video-level labels, action recognition is naturally formulated as a multi-instance multi-label learning problem. The network is optimized iteratively with selective coarse-to-fine pre-trimming based on instance-label activation. After convergence, temporal localization is further achieved with local-global temporal class activation map. Extensive experiments are conducted on two benchmark datasets, i.e. THUMOS14 and ActivityNet1.3, and experimental results clearly corroborate the efficacy of our method when compared with the state-of-the-arts.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Weakly supervised temporal action localization: a survey;Multimedia Tools and Applications;2024-02-22

2. Single-Stage Broad Multi-Instance Multi-Label Learning (BMIML) With Diverse Inter-Correlations and Its Application to Medical Image Classification;IEEE Transactions on Emerging Topics in Computational Intelligence;2024-02

3. Multi-Label Radar Compound Jamming Signal Recognition Using Complex-Valued CNN with Jamming Class Representation Fusion;Remote Sensing;2023-10-30

4. Two-Stage Multi-Instance Multi-Label Learning Model for Video Social Relationship Recognition;2023 4th International Conference on Intelligent Computing and Human-Computer Interaction (ICHCI);2023-08-04

5. Two-Stream Networks for Weakly-Supervised Temporal Action Localization with Semantic-Aware Mechanisms;2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR);2023-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3