MRI Reconstruction with Interpretable Pixel-Wise Operations Using Reinforcement Learning

Author:

Li Wentian,Feng Xidong,An Haotian,Ng Xiang Yao,Zhang Yu-Jin

Abstract

Compressed sensing magnetic resonance imaging (CS-MRI) is a technique aimed at accelerating the data acquisition of MRI. While down-sampling in k-space proportionally reduces the data acquisition time, it results in images corrupted by aliasing artifacts and blur. To reconstruct images from the down-sampled k-space, recent deep-learning based methods have shown better performance compared with classical optimization-based CS-MRI methods. However, they usually use deep neural networks as a black-box, which directly maps the corrupted images to the target images from fully-sampled k-space data. This lack of transparency may impede practical usage of such methods. In this work, we propose a deep reinforcement learning based method to reconstruct the corrupted images with meaningful pixel-wise operations (e.g. edge enhancing filters), so that the reconstruction process is transparent to users. Specifically, MRI reconstruction is formulated as Markov Decision Process with discrete actions and continuous action parameters. We conduct experiments on MICCAI dataset of brain tissues and fastMRI dataset of knee images. Our proposed method performs favorably against previous approaches. Our trained model learns to select pixel-wise operations that correspond to the anatomical structures in the MR images. This makes the reconstruction process more interpretable, which would be helpful for further medical analysis.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Selective denoising in document images using reinforcement learning;Sādhanā;2024-07-29

2. Deep-silicon photon-counting x-ray projection denoising through reinforcement learning;Journal of X-Ray Science and Technology;2024-03-27

3. Deep k-Space Partition-Based Convolutional Networks for Fast Multimodal MRI Reconstruction;2023 IEEE International Conference on Bioinformatics and Biomedicine (BIBM);2023-12-05

4. Fast MRI Reconstruction via Boosting Filter Diversity of Deep Cascading Networks;2023 IEEE International Conference on Bioinformatics and Biomedicine (BIBM);2023-12-05

5. Predicting Potential Risk: Cerebral Stroke via Regret Minimization;International Journal of Intelligent Systems;2023-12-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3