Bursting the Filter Bubble: Fairness-Aware Network Link Prediction

Author:

Masrour Farzan,Wilson Tyler,Yan Heng,Tan Pang-Ning,Esfahanian Abdol

Abstract

Link prediction is an important task in online social networking as it can be used to infer new or previously unknown relationships of a network. However, due to the homophily principle, current algorithms are susceptible to promoting links that may lead to increase segregation of the network—an effect known as filter bubble. In this study, we examine the filter bubble problem from the perspective of algorithm fairness and introduce a dyadic-level fairness criterion based on network modularity measure. We show how the criterion can be utilized as a postprocessing step to generate more heterogeneous links in order to overcome the filter bubble problem. In addition, we also present a novel framework that combines adversarial network representation learning with supervised link prediction to alleviate the filter bubble problem. Experimental results conducted on several real-world datasets showed the effectiveness of the proposed methods compared to other baseline approaches, which include conventional link prediction and fairness-aware methods for i.i.d data.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. FacGNN: Multi-faceted Fairness Enhancement for GNN through Adversarial and Contrastive Learning;2024 International Joint Conference on Neural Networks (IJCNN);2024-06-30

2. Dual-Side Adversarial Learning Based Fair Recommendation for Sensitive Attribute Filtering;ACM Transactions on Knowledge Discovery from Data;2024-06-19

3. FairGAT: Fairness-Aware Graph Attention Networks;ACM Transactions on Knowledge Discovery from Data;2024-06-19

4. Fairgen: Towards Fair Graph Generation;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

5. Endowing Pre-trained Graph Models with Provable Fairness;Proceedings of the ACM Web Conference 2024;2024-05-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3