Reinforced Curriculum Learning on Pre-Trained Neural Machine Translation Models

Author:

Zhao Mingjun,Wu Haijiang,Niu Di,Wang Xiaoli

Abstract

The competitive performance of neural machine translation (NMT) critically relies on large amounts of training data. However, acquiring high-quality translation pairs requires expert knowledge and is costly. Therefore, how to best utilize a given dataset of samples with diverse quality and characteristics becomes an important yet understudied question in NMT. Curriculum learning methods have been introduced to NMT to optimize a model's performance by prescribing the data input order, based on heuristics such as the assessment of noise and difficulty levels. However, existing methods require training from scratch, while in practice most NMT models are pre-trained on big data already. Moreover, as heuristics, they do not generalize well. In this paper, we aim to learn a curriculum for improving a pre-trained NMT model by re-selecting influential data samples from the original training set and formulate this task as a reinforcement learning problem. Specifically, we propose a data selection framework based on Deterministic Actor-Critic, in which a critic network predicts the expected change of model performance due to a certain sample, while an actor network learns to select the best sample out of a random batch of samples presented to it. Experiments on several translation datasets show that our method can further improve the performance of NMT when original batch training reaches its ceiling, without using additional new training data, and significantly outperforms several strong baseline methods.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3