DGE: Deep Generative Network Embedding Based on Commonality and Individuality
-
Published:2020-04-03
Issue:04
Volume:34
Page:6949-6956
-
ISSN:2374-3468
-
Container-title:Proceedings of the AAAI Conference on Artificial Intelligence
-
language:
-
Short-container-title:AAAI
Author:
Zhou Sheng,Wang Xin,Bu Jiajun,Ester Martin,Yu Pinggang,Chen Jiawei,Shi Qihao,Wang Can
Abstract
Network embedding plays a crucial role in network analysis to provide effective representations for a variety of learning tasks. Existing attributed network embedding methods mainly focus on preserving the observed node attributes and network topology in the latent embedding space, with the assumption that nodes connected through edges will share similar attributes. However, our empirical analysis of real-world datasets shows that there exist both commonality and individuality between node attributes and network topology. On the one hand, similar nodes are expected to share similar attributes and have edges connecting them (commonality). On the other hand, each information source may maintain individual differences as well (individuality). Simultaneously capturing commonality and individuality is very challenging due to their exclusive nature and existing work fail to do so. In this paper, we propose a deep generative embedding (DGE) framework which simultaneously captures commonality and individuality between network topology and node attributes in a generative process. Stochastic gradient variational Bayesian (SGVB) optimization is employed to infer model parameters as well as the node embeddings. Extensive experiments on four real-world datasets show the superiority of our proposed DGE framework in various tasks including node classification and link prediction.
Publisher
Association for the Advancement of Artificial Intelligence (AAAI)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Homophily-enhanced Structure Learning for Graph Clustering;Proceedings of the 32nd ACM International Conference on Information and Knowledge Management;2023-10-21
2. Distilling Holistic Knowledge with Graph Neural Networks;2021 IEEE/CVF International Conference on Computer Vision (ICCV);2021-10