RDSNet: A New Deep Architecture forReciprocal Object Detection and Instance Segmentation

Author:

Wang Shaoru,Gong Yongchao,Xing Junliang,Huang Lichao,Huang Chang,Hu Weiming

Abstract

Object detection and instance segmentation are two fundamental computer vision tasks. They are closely correlated but their relations have not yet been fully explored in most previous work. This paper presents RDSNet, a novel deep architecture for reciprocal object detection and instance segmentation. To reciprocate these two tasks, we design a two-stream structure to learn features on both the object level (i.e., bounding boxes) and the pixel level (i.e., instance masks) jointly. Within this structure, information from the two streams is fused alternately, namely information on the object level introduces the awareness of instance and translation variance to the pixel level, and information on the pixel level refines the localization accuracy of objects on the object level in return. Specifically, a correlation module and a cropping module are proposed to yield instance masks, as well as a mask based boundary refinement module for more accurate bounding boxes. Extensive experimental analyses and comparisons on the COCO dataset demonstrate the effectiveness and efficiency of RDSNet. The source code is available at https://github.com/wangsr126/RDSNet.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Weld image segmentation in industrial smoke scene;Proceedings of the Romanian Academy, Series A: Mathematics, Physics, Technical Sciences, Information Science;2024-06-30

2. Segmentation-assisted Multi-frame Radar Target Detection Network in Clutter Traffic Scenarios;2024 IEEE Intelligent Vehicles Symposium (IV);2024-06-02

3. SimpleMask: parameter link and efficient instance segmentation;The Visual Computer;2024-05-24

4. Deep learning implementation of image segmentation in agricultural applications: a comprehensive review;Artificial Intelligence Review;2024-05-22

5. Category-based depth incorporation for salient object ranking;Journal of Visual Communication and Image Representation;2024-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3