Learning Agent Communication under Limited Bandwidth by Message Pruning

Author:

Mao Hangyu,Zhang Zhengchao,Xiao Zhen,Gong Zhibo,Ni Yan

Abstract

Communication is a crucial factor for the big multi-agent world to stay organized and productive. Recently, Deep Reinforcement Learning (DRL) has been applied to learn the communication strategy and the control policy for multiple agents. However, the practical limited bandwidth in multi-agent communication has been largely ignored by the existing DRL methods. Specifically, many methods keep sending messages incessantly, which consumes too much bandwidth. As a result, they are inapplicable to multi-agent systems with limited bandwidth. To handle this problem, we propose a gating mechanism to adaptively prune less beneficial messages. We evaluate the gating mechanism on several tasks. Experiments demonstrate that it can prune a lot of messages with little impact on performance. In fact, the performance may be greatly improved by pruning redundant messages. Moreover, the proposed gating mechanism is applicable to several previous methods, equipping them the ability to address bandwidth restricted settings.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Efficient Communications in Multi-Agent Reinforcement Learning for Mobile Applications;IEEE Transactions on Wireless Communications;2024-09

2. Learning to Communicate Strategically for Efficient Collective Intelligence;Proceedings of the 2024 SIGCOMM Workshop on Networks for AI Computing;2024-08-04

3. Enhancing Multi-Agent Cooperation Through Action-Probability-Based Communication;Journal of Robotics and Mechatronics;2024-06-20

4. A survey on multi-agent reinforcement learning and its application;Journal of Automation and Intelligence;2024-06

5. SPRING: Improving the Throughput of Sharding Blockchain via Deep Reinforcement Learning Based State Placement;Proceedings of the ACM Web Conference 2024;2024-05-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3