Motion-Attentive Transition for Zero-Shot Video Object Segmentation

Author:

Zhou Tianfei,Wang Shunzhou,Zhou Yi,Yao Yazhou,Li Jianwu,Shao Ling

Abstract

In this paper, we present a novel Motion-Attentive Transition Network (MATNet) for zero-shot video object segmentation, which provides a new way of leveraging motion information to reinforce spatio-temporal object representation. An asymmetric attention block, called Motion-Attentive Transition (MAT), is designed within a two-stream encoder, which transforms appearance features into motion-attentive representations at each convolutional stage. In this way, the encoder becomes deeply interleaved, allowing for closely hierarchical interactions between object motion and appearance. This is superior to the typical two-stream architecture, which treats motion and appearance separately in each stream and often suffers from overfitting to appearance information. Additionally, a bridge network is proposed to obtain a compact, discriminative and scale-sensitive representation for multi-level encoder features, which is further fed into a decoder to achieve segmentation results. Extensive experiments on three challenging public benchmarks (i.e., DAVIS-16, FBMS and Youtube-Objects) show that our model achieves compelling performance against the state-of-the-arts. Code is available at: https://github.com/tfzhou/MATNet.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 95 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3