Translation-Based Matching Adversarial Network for Cross-Lingual Natural Language Inference

Author:

Qi Kunxun,Du Jianfeng

Abstract

Cross-lingual natural language inference is a fundamental task in cross-lingual natural language understanding, widely addressed by neural models recently. Existing neural model based methods either align sentence embeddings between source and target languages, heavily relying on annotated parallel corpora, or exploit pre-trained cross-lingual language models that are fine-tuned on a single language and hard to transfer knowledge to another language. To resolve these limitations in existing methods, this paper proposes an adversarial training framework to enhance both pre-trained models and classical neural models for cross-lingual natural language inference. It trains on the union of data in the source language and data in the target language, learning language-invariant features to improve the inference performance. Experimental results on the XNLI benchmark demonstrate that three popular neural models enhanced by the proposed framework significantly outperform the original models.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Narrowing the language gap: domain adaptation guided cross-lingual passage re-ranking;Neural Computing and Applications;2023-07-25

2. Cross-lingual textual entailment using deep learning approach;2021 International Conference on Information and Communication Technology for Development for Africa (ICT4DA);2021-11-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3