Aspect-Aware Multimodal Summarization for Chinese E-Commerce Products

Author:

Li Haoran,Yuan Peng,Xu Song,Wu Youzheng,He Xiaodong,Zhou Bowen

Abstract

We present an abstractive summarization system that produces summary for Chinese e-commerce products. This task is more challenging than general text summarization. First, the appearance of a product typically plays a significant role in customers' decisions to buy the product or not, which requires that the summarization model effectively use the visual information of the product. Furthermore, different products have remarkable features in various aspects, such as “energy efficiency” and “large capacity” for refrigerators. Meanwhile, different customers may care about different aspects. Thus, the summarizer needs to capture the most attractive aspects of a product that resonate with potential purchasers. We propose an aspect-aware multimodal summarization model that can effectively incorporate the visual information and also determine the most salient aspects of a product. We construct a large-scale Chinese e-commerce product summarization dataset that contains approximately 1.4 million manually created product summaries that are paired with detailed product information, including an image, a title, and other textual descriptions for each product. The experimental results on this dataset demonstrate that our models significantly outperform the comparative methods in terms of both the ROUGE score and manual evaluations.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multimodal summarization with modality features alignment and features filtering;Neurocomputing;2024-10

2. Abstractive text summarization: State of the art, challenges, and improvements;Neurocomputing;2024-10

3. Exploring the Trade-Off within Visual Information for MultiModal Sentence Summarization;Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval;2024-07-10

4. Homogeneous-listing-augmented Self-supervised Multimodal Product Title Refinement;Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval;2024-07-10

5. Effective and Efficient: Deeper and Faster Fusion Network for Multimodal Summarization;2024 International Joint Conference on Neural Networks (IJCNN);2024-06-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3