A New Ensemble Adversarial Attack Powered by Long-Term Gradient Memories

Author:

Che Zhaohui,Borji Ali,Zhai Guangtao,Ling Suiyi,Li Jing,Le Callet Patrick

Abstract

Deep neural networks are vulnerable to adversarial attacks. More importantly, some adversarial examples crafted against an ensemble of pre-trained source models can transfer to other new target models, thus pose a security threat to black-box applications (when the attackers have no access to the target models). Despite adopting diverse architectures and parameters, source and target models often share similar decision boundaries. Therefore, if an adversary is capable of fooling several source models concurrently, it can potentially capture intrinsic transferable adversarial information that may allow it to fool a broad class of other black-box target models. Current ensemble attacks, however, only consider a limited number of source models to craft an adversary, and obtain poor transferability. In this paper, we propose a novel black-box attack, dubbed Serial-Mini-Batch-Ensemble-Attack (SMBEA). SMBEA divides a large number of pre-trained source models into several mini-batches. For each single batch, we design 3 new ensemble strategies to improve the intra-batch transferability. Besides, we propose a new algorithm that recursively accumulates the “long-term” gradient memories of the previous batch to the following batch. This way, the learned adversarial information can be preserved and the inter-batch transferability can be improved. Experiments indicate that our method outperforms state-of-the-art ensemble attacks over multiple pixel-to-pixel vision tasks including image translation and salient region prediction. Our method successfully fools two online black-box saliency prediction systems including DeepGaze-II (Kummerer 2017) and SALICON (Huang et al. 2017). Finally, we also contribute a new repository to promote the research on adversarial attack and defense over pixel-to-pixel tasks: https://github.com/CZHQuality/AAA-Pix2pix.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3