Author:
Andresel Medina,Ortiz Magdalena,Simkus Mantas
Abstract
Among many solutions for extracting useful answers from incomplete data, ontology-mediated queries (OMQs) use domain knowledge to infer missing facts. We propose an extension of OMQs that allows us to make certain assumptions—for example, about parts of the data that may be unavailable at query time, or costly to query—and retrieve conditional answers, that is, tuples that become certain query answers when the assumptions hold. We show that querying in this powerful formalism often has no higher worst-case complexity than in plain OMQs, and that these queries are first-order rewritable for DL-Liteℛ. Rewritability is preserved even if we allow some use of closed predicates to combine the (partial) closed- and open-world assumptions. This is remarkable, as closed predicates are a very useful extension of OMQs, but they usually make query answering intractable in data complexity, even in very restricted settings.
Publisher
Association for the Advancement of Artificial Intelligence (AAAI)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Automating the Classification of Requirements Data;2021 IEEE International Conference on Big Data (Big Data);2021-12-15
2. Correcting Large Knowledge Bases Using Guided Inductive Logic Learning Rules;PRICAI 2021: Trends in Artificial Intelligence;2021