Translucent Answer Predictions in Multi-Hop Reading Comprehension

Author:

Bhargav G P Shrivatsa,Glass Michael,Garg Dinesh,Shevade Shirish,Dana Saswati,Khandelwal Dinesh,Subramaniam L Venkata,Gliozzo Alfio

Abstract

Research on the task of Reading Comprehension style Question Answering (RCQA) has gained momentum in recent years due to the emergence of human annotated datasets and associated leaderboards, for example CoQA, HotpotQA, SQuAD, TriviaQA, etc. While state-of-the-art has advanced considerably, there is still ample opportunity to advance it further on some important variants of the RCQA task. In this paper, we propose a novel deep neural architecture, called TAP (Translucent Answer Prediction), to identify answers and evidence (in the form of supporting facts) in an RCQA task requiring multi-hop reasoning. TAP comprises two loosely coupled networks – Local and Global Interaction eXtractor (LoGIX) and Answer Predictor (AP). LoGIX predicts supporting facts, whereas AP consumes these predicted supporting facts to predict the answer span. The novel design of LoGIX is inspired by two key design desiderata – local context and global interaction– that we identified by analyzing examples of multi-hop RCQA task. The loose coupling between LoGIX and the AP reveals the set of sentences used by the AP in predicting an answer. Therefore, answer predictions of TAP can be interpreted in a translucent manner. TAP offers state-of-the-art performance on the HotpotQA (Yang et al. 2018) dataset – an apt dataset for multi-hop RCQA task – as it occupies Rank-1 on its leaderboard (https://hotpotqa.github.io/) at the time of submission.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3