Author:
Wang Yulong,Zhang Xiaolu,Xie Lingxi,Zhou Jun,Su Hang,Zhang Bo,Hu Xiaolin
Abstract
Network pruning is an important research field aiming at reducing computational costs of neural networks. Conventional approaches follow a fixed paradigm which first trains a large and redundant network, and then determines which units (e.g., channels) are less important and thus can be removed. In this work, we find that pre-training an over-parameterized model is not necessary for obtaining the target pruned structure. In fact, a fully-trained over-parameterized model will reduce the search space for the pruned structure. We empirically show that more diverse pruned structures can be directly pruned from randomly initialized weights, including potential models with better performance. Therefore, we propose a novel network pruning pipeline which allows pruning from scratch with little training overhead. In the experiments for compressing classification models on CIFAR10 and ImageNet datasets, our approach not only greatly reduces the pre-training burden of traditional pruning methods, but also achieves similar or even higher accuracy under the same computation budgets. Our results facilitate the community to rethink the effectiveness of existing techniques used for network pruning.
Publisher
Association for the Advancement of Artificial Intelligence (AAAI)
Cited by
71 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献