Grapy-ML: Graph Pyramid Mutual Learning for Cross-Dataset Human Parsing

Author:

He Haoyu,Zhang Jing,Zhang Qiming,Tao Dacheng

Abstract

Human parsing, or human body part semantic segmentation, has been an active research topic due to its wide potential applications. In this paper, we propose a novel GRAph PYramid Mutual Learning (Grapy-ML) method to address the cross-dataset human parsing problem, where the annotations are at different granularities. Starting from the prior knowledge of the human body hierarchical structure, we devise a graph pyramid module (GPM) by stacking three levels of graph structures from coarse granularity to fine granularity subsequently. At each level, GPM utilizes the self-attention mechanism to model the correlations between context nodes. Then, it adopts a top-down mechanism to progressively refine the hierarchical features through all the levels. GPM also enables efficient mutual learning. Specifically, the network weights of the first two levels are shared to exchange the learned coarse-granularity information across different datasets. By making use of the multi-granularity labels, Grapy-ML learns a more discriminative feature representation and achieves state-of-the-art performance, which is demonstrated by extensive experiments on the three popular benchmarks, e.g. CIHP dataset. The source code is publicly available at https://github.com/Charleshhy/Grapy-ML.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3