Relational Learning for Joint Head and Human Detection

Author:

Chi Cheng,Zhang Shifeng,Xing Junliang,Lei Zhen,Li Stan Z.,Zou Xudong

Abstract

Head and human detection have been rapidly improved with the development of deep convolutional neural networks. However, these two tasks are often studied separately without considering their inherent correlation, leading to that 1) head detection is often trapped in more false positives, and 2) the performance of human detector frequently drops dramatically in crowd scenes. To handle these two issues, we present a novel joint head and human detection network, namely JointDet, which effectively detects head and human body simultaneously. Moreover, we design a head-body relationship discriminating module to perform relational learning between heads and human bodies, and leverage this learned relationship to regain the suppressed human detections and reduce head false positives. To verify the effectiveness of the proposed method, we annotate head bounding boxes of the CityPersons and Caltech-USA datasets, and conduct extensive experiments on the CrowdHuman, CityPersons and Caltech-USA datasets. As a consequence, the proposed JointDet detector achieves state-of-the-art performance on these three benchmarks. To facilitate further studies on the head and human detection problem, all new annotations, source codes and trained models are available at https://github.com/ChiCheng123/JointDet.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Toward Accurate and Robust Pedestrian Detection via Variational Inference;International Journal of Computer Vision;2024-08-22

2. BPJDet: Extended Object Representation for Generic Body-Part Joint Detection;IEEE Transactions on Pattern Analysis and Machine Intelligence;2024-06

3. A Pedestrian Detection Algorithm based on Improved YOLOv8;2024 IEEE 6th Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC);2024-05-24

4. Context feature fusion and enhanced non-maximum suppression for pedestrian detection in crowded scenes;Multimedia Tools and Applications;2024-03-16

5. Triangular Chain Closed-Loop Detection Network for Dense Pedestrian Detection;IEEE Transactions on Instrumentation and Measurement;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3