Acquiring Knowledge from Pre-Trained Model to Neural Machine Translation

Author:

Weng Rongxiang,Yu Heng,Huang Shujian,Cheng Shanbo,Luo Weihua

Abstract

Pre-training and fine-tuning have achieved great success in natural language process field. The standard paradigm of exploiting them includes two steps: first, pre-training a model, e.g. BERT, with a large scale unlabeled monolingual data. Then, fine-tuning the pre-trained model with labeled data from downstream tasks. However, in neural machine translation (NMT), we address the problem that the training objective of the bilingual task is far different from the monolingual pre-trained model. This gap leads that only using fine-tuning in NMT can not fully utilize prior language knowledge. In this paper, we propose an Apt framework for acquiring knowledge from pre-trained model to NMT. The proposed approach includes two modules: 1). a dynamic fusion mechanism to fuse task-specific features adapted from general knowledge into NMT network, 2). a knowledge distillation paradigm to learn language knowledge continuously during the NMT training process. The proposed approach could integrate suitable knowledge from pre-trained models to improve the NMT. Experimental results on WMT English to German, German to English and Chinese to English machine translation tasks show that our model outperforms strong baselines and the fine-tuning counterparts.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. XLORE 3: A Large-Scale Multilingual Knowledge Graph from Heterogeneous Wiki Knowledge Resources;ACM Transactions on Information Systems;2024-08-19

2. Short text classification with Soft Knowledgeable Prompt-tuning;Expert Systems with Applications;2024-07

3. Vesper: A Compact and Effective Pretrained Model for Speech Emotion Recognition;IEEE Transactions on Affective Computing;2024-07

4. Asymmetric Short-Text Clustering via Prompt;New Generation Computing;2024-02-19

5. Leveraging Diverse Modeling Contexts With Collaborating Learning for Neural Machine Translation;IEEE/ACM Transactions on Audio, Speech, and Language Processing;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3