Partial Label Learning with Batch Label Correction

Author:

Yan Yan,Guo Yuhong

Abstract

Partial label (PL) learning tackles the problem where each training instance is associated with a set of candidate labels, among which only one is the true label. In this paper, we propose a simple but effective batch-based partial label learning algorithm named PL-BLC, which tackles the partial label learning problem with batch-wise label correction (BLC). PL-BLC dynamically corrects the label confidence matrix of each training batch based on the current prediction network, and adopts a MixUp data augmentation scheme to enhance the underlying true labels against the redundant noisy labels. In addition, it introduces a teacher model through a consistency cost to ensure the stability of the batch-based prediction network update. Extensive experiments are conducted on synthesized and real-world partial label learning datasets, while the proposed approach demonstrates the state-of-the-art performance for partial label learning.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Partial label learning via weighted centroid clustering disambiguation;Neurocomputing;2024-11

2. Dimensionality Reduction for Partial Label Learning: A Unified and Adaptive Approach;IEEE Transactions on Knowledge and Data Engineering;2024-08

3. An adaptive class prototype generation framework for partial label learning;Engineering Applications of Artificial Intelligence;2024-07

4. Confidence-Driven Semi-Supervised Partial Label Learning;2024 International Joint Conference on Neural Networks (IJCNN);2024-06-30

5. Self-distillation and self-supervision for partial label learning;Pattern Recognition;2024-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3