Schema-Guided Multi-Domain Dialogue State Tracking with Graph Attention Neural Networks

Author:

Chen Lu,Lv Boer,Wang Chi,Zhu Su,Tan Bowen,Yu Kai

Abstract

Dialogue state tracking (DST) aims at estimating the current dialogue state given all the preceding conversation. For multi-domain DST, the data sparsity problem is also a major obstacle due to the increased number of state candidates. Existing approaches generally predict the value for each slot independently and do not consider slot relations, which may aggravate the data sparsity problem. In this paper, we propose a Schema-guided multi-domain dialogue State Tracker with graph attention networks (SST) that predicts dialogue states from dialogue utterances and schema graphs which contain slot relations in edges. We also introduce a graph attention matching network to fuse information from utterances and graphs, and a recurrent graph attention network to control state updating. Experiment results show that our approach obtains new state-of-the-art performance on both MultiWOZ 2.0 and MultiWOZ 2.1 benchmarks.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Improving Pointer Network based Dialogue State Tracking via Dual Hierarchical Selective Augmentation;2024 International Joint Conference on Neural Networks (IJCNN);2024-06-30

2. Graph-based Dynamic Domain Selection for Dialogue State Tracking;2024 International Joint Conference on Neural Networks (IJCNN);2024-06-30

3. UTMGAT: a unified transformer with memory encoder and graph attention networks for multidomain dialogue state tracking;Applied Intelligence;2024-06-25

4. Modeling the impact of out-of-schema questions in task-oriented dialog systems;Data Mining and Knowledge Discovery;2024-06-04

5. Domain-Slot Aware Contrastive Learning for Improved Dialogue State Tracking;ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP);2024-04-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3