Unsupervised Domain Adaptation on Reading Comprehension

Author:

Cao Yu,Fang Meng,Yu Baosheng,Zhou Joey Tianyi

Abstract

Reading comprehension (RC) has been studied in a variety of datasets with the boosted performance brought by deep neural networks. However, the generalization capability of these models across different domains remains unclear. To alleviate the problem, we investigate unsupervised domain adaptation on RC, wherein a model is trained on the labeled source domain and to be applied to the target domain with only unlabeled samples. We first show that even with the powerful BERT contextual representation, a model can not generalize well from one domain to another. To solve this, we provide a novel conditional adversarial self-training method (CASe). Specifically, our approach leverages a BERT model fine-tuned on the source dataset along with the confidence filtering to generate reliable pseudo-labeled samples in the target domain for self-training. On the other hand, it further reduces domain distribution discrepancy through conditional adversarial learning across domains. Extensive experiments show our approach achieves comparable performance to supervised models on multiple large-scale benchmark datasets.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Source-Free Domain Adaptation for Question Answering with Masked Self-training;Transactions of the Association for Computational Linguistics;2024

2. Answering Spatial Commonsense Questions by Learning Domain-Invariant Generalization Knowledge;Lecture Notes in Computer Science;2024

3. Unsupervised Domain Adaptation on Sentence Matching Through Self-Supervision;Journal of Computer Science and Technology;2023-11-30

4. Killing Many Birds with One Stone: Single-Source to Multiple-Target Domain Adaptation for Extractive Question Answering;2023 IEEE Smart World Congress (SWC);2023-08-28

5. Source-Free Unsupervised Domain Adaptation for Question Answering;ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP);2023-06-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3