Author:
Song Wonil,Choi Sungil,Jeong Somi,Sohn Kwanghoon
Abstract
We present a first attempt for stereoscopic image super-resolution (SR) for recovering high-resolution details while preserving stereo-consistency between stereoscopic image pair. The most challenging issue in the stereoscopic SR is that the texture details should be consistent for corresponding pixels in stereoscopic SR image pair. However, existing stereo SR methods cannot maintain the stereo-consistency, thus causing 3D fatigue to the viewers. To address this issue, in this paper, we propose a self and parallax attention mechanism (SPAM) to aggregate the information from its own image and the counterpart stereo image simultaneously, thus reconstructing high-quality stereoscopic SR image pairs. Moreover, we design an efficient network architecture and effective loss functions to enforce stereo-consistency constraint. Finally, experimental results demonstrate the superiority of our method over state-of-the-art SR methods in terms of both quantitative metrics and qualitative visual quality while maintaining stereo-consistency between stereoscopic image pair.
Publisher
Association for the Advancement of Artificial Intelligence (AAAI)
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献