HS-CAI: A Hybrid DCOP Algorithm via Combining Search with Context-Based Inference

Author:

Chen Dingding,Deng Yanchen,Chen Ziyu,Zhang Wenxing,He Zhongshi

Abstract

Search and inference are two main strategies for optimally solving Distributed Constraint Optimization Problems (DCOPs). Recently, several algorithms were proposed to combine their advantages. Unfortunately, such algorithms only use an approximated inference as a one-shot preprocessing phase to construct the initial lower bounds which lead to inefficient pruning under the limited memory budget. On the other hand, iterative inference algorithms (e.g., MB-DPOP) perform a context-based complete inference for all possible contexts but suffer from tremendous traffic overheads. In this paper, (i) hybridizing search with context-based inference, we propose a complete algorithm for DCOPs, named HS-CAI where the inference utilizes the contexts derived from the search process to establish tight lower bounds while the search uses such bounds for efficient pruning and thereby reduces contexts for the inference. Furthermore, (ii) we introduce a context evaluation mechanism to select the context patterns for the inference to further reduce the overheads incurred by iterative inferences. Finally, (iii) we prove the correctness of our algorithm and the experimental results demonstrate its superiority over the state-of-the-art.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Toward fast belief propagation for distributed constraint optimization problems via heuristic search;Autonomous Agents and Multi-Agent Systems;2024-04-01

2. Differential Evolution Based on Estimation of Distribution for C-DCOP;2023 3rd International Conference on Intelligent Communications and Computing (ICC);2023-11-24

3. Inference-based complete algorithms for asymmetric distributed constraint optimization problems;Artificial Intelligence Review;2022-10-03

4. VLSs: A Local Search Algorithm for Distributed Constraint Optimization Problems;International Journal of Pattern Recognition and Artificial Intelligence;2022-01-12

5. Utility distribution matters: enabling fast belief propagation for multi-agent optimization with dense local utility function;Autonomous Agents and Multi-Agent Systems;2021-06-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3