Author:
Hosseini Matin,Maida Anthony S.,Hosseini Majid,Raju Gottumukkala
Abstract
In this paper, we proposed a novel deep-learning method called Inception LSTM for video frame prediction. A standard convolutional LSTM uses a single size kernel for each of its gates. Having multiple kernel sizes within a single gate would provide a richer features that would otherwise not be possible with a single kernel. Our key idea is to introduce inception like kernels within the LSTM gates to capture features from a bigger area of the image while retaining the fine resolution of small information. We implemented the proposed idea of inception LSTM network on PredNet network with both inception version 1 and inception version 2 modules. The proposed idea was evaluated on both KITTI and KTH data. Our results show that the Inception LSTM has better predictive performance compared to convolutional LSTM. We also observe that LSTM with Inception version 1 has better predictive performance compared to Inception version 2, but Inception version 2 has less computational cost.
Publisher
Association for the Advancement of Artificial Intelligence (AAAI)
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献