Online Knowledge Distillation with Diverse Peers

Author:

Chen Defang,Mei Jian-Ping,Wang Can,Feng Yan,Chen Chun

Abstract

Distillation is an effective knowledge-transfer technique that uses predicted distributions of a powerful teacher model as soft targets to train a less-parameterized student model. A pre-trained high capacity teacher, however, is not always available. Recently proposed online variants use the aggregated intermediate predictions of multiple student models as targets to train each student model. Although group-derived targets give a good recipe for teacher-free distillation, group members are homogenized quickly with simple aggregation functions, leading to early saturated solutions. In this work, we propose Online Knowledge Distillation with Diverse peers (OKDDip), which performs two-level distillation during training with multiple auxiliary peers and one group leader. In the first-level distillation, each auxiliary peer holds an individual set of aggregation weights generated with an attention-based mechanism to derive its own targets from predictions of other auxiliary peers. Learning from distinct target distributions helps to boost peer diversity for effectiveness of group-based distillation. The second-level distillation is performed to transfer the knowledge in the ensemble of auxiliary peers further to the group leader, i.e., the model used for inference. Experimental results show that the proposed framework consistently gives better performance than state-of-the-art approaches without sacrificing training or inference complexity, demonstrating the effectiveness of the proposed two-level distillation framework.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 137 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dealing with partial labels by knowledge distillation;Pattern Recognition;2025-02

2. PURF: Improving teacher representations by imposing smoothness constraints for knowledge distillation;Applied Soft Computing;2024-07

3. A Knowledge Distillation-Driven Lightweight CNN Model for Detecting Malicious Encrypted Network Traffic;2024 International Joint Conference on Neural Networks (IJCNN);2024-06-30

4. Online Policy Distillation with Decision-Attention;2024 International Joint Conference on Neural Networks (IJCNN);2024-06-30

5. Dual-Branch Knowledge Distillation for Long-Tailed Recognition;2024 International Joint Conference on Neural Networks (IJCNN);2024-06-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3