Multi-Label Patent Categorization with Non-Local Attention-Based Graph Convolutional Network

Author:

Tang Pingjie,Jiang Meng,Xia Bryan (Ning),Pitera Jed W.,Welser Jeffrey,Chawla Nitesh V.

Abstract

Patent categorization, which is to assign multiple International Patent Classification (IPC) codes to a patent document, relies heavily on expert efforts, as it requires substantial domain knowledge. When formulated as a multi-label text classification (MTC) problem, it draws two challenges to existing models: one is to learn effective document representations from text content; the other is to model the cross-section behavior of label set. In this work, we propose a label attention model based on graph convolutional network. It jointly learns the document-word associations and word-word co-occurrences to generate rich semantic embeddings of documents. It employs a non-local attention mechanism to learn label representations in the same space of document representations for multi-label classification. On a large CIRCA patent database, we evaluate the performance of our model and as many as seven competitive baselines. We find that our model outperforms all those prior state of the art by a large margin and achieves high performance on P@k and nDCG@k.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3