Model Watermarking for Image Processing Networks

Author:

Zhang Jie,Chen Dongdong,Liao Jing,Fang Han,Zhang Weiming,Zhou Wenbo,Cui Hao,Yu Nenghai

Abstract

Deep learning has achieved tremendous success in numerous industrial applications. As training a good model often needs massive high-quality data and computation resources, the learned models often have significant business values. However, these valuable deep models are exposed to a huge risk of infringements. For example, if the attacker has the full information of one target model including the network structure and weights, the model can be easily finetuned on new datasets. Even if the attacker can only access the output of the target model, he/she can still train another similar surrogate model by generating a large scale of input-output training pairs. How to protect the intellectual property of deep models is a very important but seriously under-researched problem. There are a few recent attempts at classification network protection only.In this paper, we propose the first model watermarking framework for protecting image processing models. To achieve this goal, we leverage the spatial invisible watermarking mechanism. Specifically, given a black-box target model, a unified and invisible watermark is hidden into its outputs, which can be regarded as a special task-agnostic barrier. In this way, when the attacker trains one surrogate model by using the input-output pairs of the target model, the hidden watermark will be learned and extracted afterward. To enable watermarks from binary bits to high-resolution images, both traditional and deep spatial invisible watermarking mechanism are considered. Experiments demonstrate the robustness of the proposed watermarking mechanism, which can resist surrogate models learned with different network structures and objective functions. Besides deep models, the proposed method is also easy to be extended to protect data and traditional image processing algorithms.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Robust Model Watermarking for Image Processing Networks via Structure Consistency;IEEE Transactions on Pattern Analysis and Machine Intelligence;2024-10

2. High-Frequency Matters: Attack and Defense for Image-Processing Model Watermarking;IEEE Transactions on Services Computing;2024-07

3. Deep Model Intellectual Property Protection With Compression-Resistant Model Watermarking;IEEE Transactions on Artificial Intelligence;2024-07

4. Digital Watermarking Technology of Data Element Circulation Transaction;2024 IEEE 10th International Conference on Edge Computing and Scalable Cloud (EdgeCom);2024-06-28

5. Suppressing High-Frequency Artifacts for Generative Model Watermarking by Anti-Aliasing;Proceedings of the 2024 ACM Workshop on Information Hiding and Multimedia Security;2024-06-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3