A Multi-Task Approach to Open Domain Suggestion Mining (Student Abstract)
-
Published:2020-04-03
Issue:10
Volume:34
Page:13817-13818
-
ISSN:2374-3468
-
Container-title:Proceedings of the AAAI Conference on Artificial Intelligence
-
language:
-
Short-container-title:AAAI
Author:
Jain Minni,Leekha Maitree,Goswami Mononito
Abstract
Consumer reviews online may contain suggestions useful for improving the target products and services. Mining suggestions is challenging because the field lacks large labelled and balanced datasets. Furthermore, most prior studies have only focused on mining suggestions in a single domain. In this work, we introduce a novel up-sampling technique to address the problem of class imbalance, and propose a multi-task deep learning approach for mining suggestions from multiple domains. Experimental results on a publicly available dataset show that our up-sampling technique coupled with the multi-task framework outperforms state-of-the-art open domain suggestion mining models in terms of the F-1 measure and AUC.
Publisher
Association for the Advancement of Artificial Intelligence (AAAI)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Explainable System for Suggestion Mining using attention;2022 8th International Conference on Advanced Computing and Communication Systems (ICACCS);2022-03-25