Exploit and Replace: An Asymmetrical Two-Stream Architecture for Versatile Light Field Saliency Detection

Author:

Piao Yongri,Rong Zhengkun,Zhang Miao,Lu Huchuan

Abstract

Light field saliency detection is becoming of increasing interest in recent years due to the significant improvements in challenging scenes by using abundant light field cues. However, high dimension of light field data poses computation-intensive and memory-intensive challenges, and light field data access is far less ubiquitous as RGB data. These may severely impede practical applications of light field saliency detection. In this paper, we introduce an asymmetrical two-stream architecture inspired by knowledge distillation to confront these challenges. First, we design a teacher network to learn to exploit focal slices for higher requirements on desktop computers and meanwhile transfer comprehensive focusness knowledge to the student network. Our teacher network is achieved relying on two tailor-made modules, namely multi-focusness recruiting module (MFRM) and multi-focusness screening module (MFSM), respectively. Second, we propose two distillation schemes to train a student network towards memory and computation efficiency while ensuring the performance. The proposed distillation schemes ensure better absorption of focusness knowledge and enable the student to replace the focal slices with a single RGB image in an user-friendly way. We conduct the experiments on three benchmark datasets and demonstrate that our teacher network achieves state-of-the-arts performance and student network (ResNet18) achieves Top-1 accuracies on HFUT-LFSD dataset and Top-4 on DUT-LFSD, which tremendously minimizes the model size by 56% and boosts the Frame Per Second (FPS) by 159%, compared with the best performing method.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A foreground-context dual-guided network for light-field salient object detection;Signal Processing: Image Communication;2024-10

2. Rethinking Feature Mining for Light Field Salient Object Detection;ACM Transactions on Multimedia Computing, Communications, and Applications;2024-07-08

3. Gated multi-modal edge refinement network for light field salient object detection;ACM Transactions on Multimedia Computing, Communications, and Applications;2024-06-28

4. Light field salient object detection based on discrete viewpoint selection and multi-feature fusion;The Visual Computer;2024-04-20

5. Parallax-Aware Network for Light Field Salient Object Detection;IEEE Signal Processing Letters;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3