Author:
Yang Kai-Cheng,Varol Onur,Hui Pik-Mai,Menczer Filippo
Abstract
Efficient and reliable social bot classification is crucial for detecting information manipulation on social media. Despite rapid development, state-of-the-art bot detection models still face generalization and scalability challenges, which greatly limit their applications. In this paper we propose a framework that uses minimal account metadata, enabling efficient analysis that scales up to handle the full stream of public tweets of Twitter in real time. To ensure model accuracy, we build a rich collection of labeled datasets for training and validation. We deploy a strict validation system so that model performance on unseen datasets is also optimized, in addition to traditional cross-validation. We find that strategically selecting a subset of training data yields better model accuracy and generalization than exhaustively training on all available data. Thanks to the simplicity of the proposed model, its logic can be interpreted to provide insights into social bot characteristics.
Publisher
Association for the Advancement of Artificial Intelligence (AAAI)
Cited by
163 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献