MultiSumm: Towards a Unified Model for Multi-Lingual Abstractive Summarization

Author:

Cao Yue,Wan Xiaojun,Yao Jinge,Yu Dian

Abstract

Automatic text summarization aims at producing a shorter version of the input text that conveys the most important information. However, multi-lingual text summarization, where the goal is to process texts in multiple languages and output summaries in the corresponding languages with a single model, has been rarely studied. In this paper, we present MultiSumm, a novel multi-lingual model for abstractive summarization. The MultiSumm model uses the following training regime: (I) multi-lingual learning that contains language model training, auto-encoder training, translation and back-translation training, and (II) joint summary generation training. We conduct experiments on summarization datasets for five rich-resource languages: English, Chinese, French, Spanish, and German, as well as two low-resource languages: Bosnian and Croatian. Experimental results show that our proposed model significantly outperforms a multi-lingual baseline model. Specifically, our model achieves comparable or even better performance than models trained separately on each language. As an additional contribution, we construct the first summarization dataset for Bosnian and Croatian, containing 177,406 and 204,748 samples, respectively.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3