Pyramid Constrained Self-Attention Network for Fast Video Salient Object Detection

Author:

Gu Yuchao,Wang Lijuan,Wang Ziqin,Liu Yun,Cheng Ming-Ming,Lu Shao-Ping

Abstract

Spatiotemporal information is essential for video salient object detection (VSOD) due to the highly attractive object motion for human's attention. Previous VSOD methods usually use Long Short-Term Memory (LSTM) or 3D ConvNet (C3D), which can only encode motion information through step-by-step propagation in the temporal domain. Recently, the non-local mechanism is proposed to capture long-range dependencies directly. However, it is not straightforward to apply the non-local mechanism into VSOD, because i) it fails to capture motion cues and tends to learn motion-independent global contexts; ii) its computation and memory costs are prohibitive for video dense prediction tasks such as VSOD. To address the above problems, we design a Constrained Self-Attention (CSA) operation to capture motion cues, based on the prior that objects always move in a continuous trajectory. We group a set of CSA operations in Pyramid structures (PCSA) to capture objects at various scales and speeds. Extensive experimental results demonstrate that our method outperforms previous state-of-the-art methods in both accuracy and speed (110 FPS on a single Titan Xp) on five challenge datasets. Our code is available at https://github.com/guyuchao/PyramidCSA.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 71 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3