Multi-Fidelity Multi-Objective Bayesian Optimization: An Output Space Entropy Search Approach

Author:

Belakaria Syrine,Deshwal Aryan,Doppa Janardhan Rao

Abstract

We study the novel problem of blackbox optimization of multiple objectives via multi-fidelity function evaluations that vary in the amount of resources consumed and their accuracy. The overall goal is to appromixate the true Pareto set of solutions by minimizing the resources consumed for function evaluations. For example, in power system design optimization, we need to find designs that trade-off cost, size, efficiency, and thermal tolerance using multi-fidelity simulators for design evaluations. In this paper, we propose a novel approach referred as Multi-Fidelity Output Space Entropy Search for Multi-objective Optimization (MF-OSEMO) to solve this problem. The key idea is to select the sequence of candidate input and fidelity-vector pairs that maximize the information gained about the true Pareto front per unit resource cost. Our experiments on several synthetic and real-world benchmark problems show that MF-OSEMO, with both approximations, significantly improves over the state-of-the-art single-fidelity algorithms for multi-objective optimization.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Surrogate-Assisted Expensive Constrained Multi-Objective Optimization Algorithm Based on Adaptive Switching of Acquisition Functions;IEEE Transactions on Emerging Topics in Computational Intelligence;2024-04

2. Fair and green hyperparameter optimization via multi-objective and multiple information source Bayesian optimization;Machine Learning;2024-02-28

3. Bi-Level Multiobjective Evolutionary Learning: A Case Study on Multitask Graph Neural Topology Search;IEEE Transactions on Evolutionary Computation;2024-02

4. Preference-Aware Constrained Multi-Objective Bayesian Optimization;Proceedings of the 7th Joint International Conference on Data Science & Management of Data (11th ACM IKDD CODS and 29th COMAD);2024-01-04

5. High-Dimensional Multi-Objective Bayesian Optimization With Block Coordinate Updates: Case Studies in Intelligent Transportation System;IEEE Transactions on Intelligent Transportation Systems;2024-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3