Entrainment2Vec: Embedding Entrainment for Multi-Party Dialogues

Author:

Rahimi Zahra,Litman Diane

Abstract

Entrainment is the propensity of speakers to begin behaving like one another in conversation. While most entrainment studies have focused on dyadic interactions, researchers have also started to investigate multi-party conversations. In these studies, multi-party entrainment has typically been estimated by averaging the pairs' entrainment values or by averaging individuals' entrainment to the group. While such multi-party measures utilize the strength of dyadic entrainment, they have not yet exploited different aspects of the dynamics of entrainment relations in multi-party groups. In this paper, utilizing an existing pairwise asymmetric entrainment measure, we propose a novel graph-based vector representation of multi-party entrainment that incorporates both strength and dynamics of pairwise entrainment relations. The proposed kernel approach and weakly-supervised representation learning method show promising results at the downstream task of predicting team outcomes. Also, examining the embedding, we found interesting information about the dynamics of the entrainment relations. For example, teams with more influential members have more process conflict.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Speaking Similarly: Team Personality Composition and Acoustic-Prosodic Entrainment;Small Group Research;2023-06-07

2. Identifying Entrainment in Task-Oriented Conversations;ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP);2023-06-04

3. A Proactive and Generalizable Conflict Prediction Model;2023 IEEE 17th International Conference on Semantic Computing (ICSC);2023-02

4. Entrainment Analysis for Assessment of Autistic Speech Prosody Using Bottleneck Features of Deep Neural Network;ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP);2022-05-23

5. Learning a Generalizable Model of Team Conflict from Multiparty Dialogues;International Journal of Semantic Computing;2021-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3