From Few to More: Large-Scale Dynamic Multiagent Curriculum Learning

Author:

Wang Weixun,Yang Tianpei,Liu Yong,Hao Jianye,Hao Xiaotian,Hu Yujing,Chen Yingfeng,Fan Changjie,Gao Yang

Abstract

A lot of efforts have been devoted to investigating how agents can learn effectively and achieve coordination in multiagent systems. However, it is still challenging in large-scale multiagent settings due to the complex dynamics between the environment and agents and the explosion of state-action space. In this paper, we design a novel Dynamic Multiagent Curriculum Learning (DyMA-CL) to solve large-scale problems by starting from learning on a multiagent scenario with a small size and progressively increasing the number of agents. We propose three transfer mechanisms across curricula to accelerate the learning process. Moreover, due to the fact that the state dimension varies across curricula, and existing network structures cannot be applied in such a transfer setting since their network input sizes are fixed. Therefore, we design a novel network structure called Dynamic Agent-number Network (DyAN) to handle the dynamic size of the network input. Experimental results show that DyMA-CL using DyAN greatly improves the performance of large-scale multiagent learning compared with state-of-the-art deep reinforcement learning approaches. We also investigate the influence of three transfer mechanisms across curricula through extensive simulations.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Stochastic Initial States Randomization Method for Robust Knowledge Transfer in Multi-Agent Reinforcement Learning;Journal of the Korea Institute of Military Science and Technology;2024-08-05

2. Multi-agent policy transfer via task relationship modeling;Science China Information Sciences;2024-07-22

3. MARLUI: Multi-Agent Reinforcement Learning for Adaptive Point-and-Click UIs;Proceedings of the ACM on Human-Computer Interaction;2024-06-17

4. Cur-CoEdge: Curiosity-Driven Collaborative Request Scheduling in Edge-Cloud Systems;IEEE INFOCOM 2024 - IEEE Conference on Computer Communications;2024-05-20

5. Reward Function Design Method for Long Episode Pursuit Tasks Under Polar Coordinate in Multi-Agent Reinforcement Learning;Journal of Shanghai Jiaotong University (Science);2024-04-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3