DWM: A Decomposable Winograd Method for Convolution Acceleration

Author:

Huang Di,Zhang Xishan,Zhang Rui,Zhi Tian,He Deyuan,Guo Jiaming,Liu Chang,Guo Qi,Du Zidong,Liu Shaoli,Chen Tianshi,Chen Yunji

Abstract

Winograd's minimal filtering algorithm has been widely used in Convolutional Neural Networks (CNNs) to reduce the number of multiplications for faster processing. However, it is only effective on convolutions with kernel size as 3x3 and stride as 1, because it suffers from significantly increased FLOPs and numerical accuracy problem for kernel size larger than 3x3 and fails on convolution with stride larger than 1. In this paper, we propose a novel Decomposable Winograd Method (DWM), which breaks through the limitation of original Winograd's minimal filtering algorithm to a wide and general convolutions. DWM decomposes kernels with large size or large stride to several small kernels with stride as 1 for further applying Winograd method, so that DWM can reduce the number of multiplications while keeping the numerical accuracy. It enables the fast exploring of larger kernel size and larger stride value in CNNs for high performance and accuracy and even the potential for new CNNs. Comparing against the original Winograd, the proposed DWM is able to support all kinds of convolutions with a speedup of ∼2, without affecting the numerical accuracy.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. MACA: Memory-aware convolution accelerating for CNN inference on edge devices;2024 27th International Conference on Computer Supported Cooperative Work in Design (CSCWD);2024-05-08

2. WinTA: An Efficient Reconfigurable CNN Training Accelerator With Decomposition Winograd;IEEE Transactions on Circuits and Systems I: Regular Papers;2024-02

3. Exploring Winograd Convolution for Cost-Effective Neural Network Fault Tolerance;IEEE Transactions on Very Large Scale Integration (VLSI) Systems;2023-11

4. An Efficient Accelerator on FPGA for Large Convolution and Correlation using Winograd;2023 8th International Conference on Integrated Circuits and Microsystems (ICICM);2023-10-20

5. Expanding the Edge: Enabling Efficient Winograd CNN Inference With Deep Reuse on Edge Device;IEEE Transactions on Knowledge and Data Engineering;2023-10-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3