Loss-Based Attention for Deep Multiple Instance Learning

Author:

Shi Xiaoshuang,Xing Fuyong,Xie Yuanpu,Zhang Zizhao,Cui Lei,Yang Lin

Abstract

Although attention mechanisms have been widely used in deep learning for many tasks, they are rarely utilized to solve multiple instance learning (MIL) problems, where only a general category label is given for multiple instances contained in one bag. Additionally, previous deep MIL methods firstly utilize the attention mechanism to learn instance weights and then employ a fully connected layer to predict the bag label, so that the bag prediction is largely determined by the effectiveness of learned instance weights. To alleviate this issue, in this paper, we propose a novel loss based attention mechanism, which simultaneously learns instance weights and predictions, and bag predictions for deep multiple instance learning. Specifically, it calculates instance weights based on the loss function, e.g. softmax+cross-entropy, and shares the parameters with the fully connected layer, which is to predict instance and bag predictions. Additionally, a regularization term consisting of learned weights and cross-entropy functions is utilized to boost the recall of instances, and a consistency cost is used to smooth the training process of neural networks for boosting the model generalization performance. Extensive experiments on multiple types of benchmark databases demonstrate that the proposed attention mechanism is a general, effective and efficient framework, which can achieve superior bag and image classification performance over other state-of-the-art MIL methods, with obtaining higher instance precision and recall than previous attention mechanisms. Source codes are available on https://github.com/xsshi2015/Loss-Attention.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3