Keyphrase Generation for Scientific Articles Using GANs (Student Abstract)
-
Published:2020-04-03
Issue:10
Volume:34
Page:13931-13932
-
ISSN:2374-3468
-
Container-title:Proceedings of the AAAI Conference on Artificial Intelligence
-
language:
-
Short-container-title:AAAI
Author:
Swaminathan Avinash,Gupta Raj Kuwar,Zhang Haimin,Mahata Debanjan,Gosangi Rakesh,Shah Rajiv Ratn
Abstract
In this paper, we present a keyphrase generation approach using conditional Generative Adversarial Networks (GAN). In our GAN model, the generator outputs a sequence of keyphrases based on the title and abstract of a scientific article. The discriminator learns to distinguish between machine-generated and human-curated keyphrases. We evaluate this approach on standard benchmark datasets. Our model achieves state-of-the-art performance in generation of abstractive keyphrases and is also comparable to the best performing extractive techniques. We also demonstrate that our method generates more diverse keyphrases and make our implementation publicly available1.
Publisher
Association for the Advancement of Artificial Intelligence (AAAI)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献