Type-Aware Anchor Link Prediction across Heterogeneous Networks Based on Graph Attention Network

Author:

Li Xiaoxue,Shang Yanmin,Cao Yanan,Li Yangxi,Tan Jianlong,Liu Yanbing

Abstract

Anchor Link Prediction (ALP) across heterogeneous networks plays a pivotal role in inter-network applications. The difficulty of anchor link prediction in heterogeneous networks lies in how to consider the factors affecting nodes alignment comprehensively. In recent years, predicting anchor links based on network embedding has become the main trend. For heterogeneous networks, previous anchor link prediction methods first integrate various types of nodes associated with a user node to obtain a fusion embedding vector from global perspective, and then predict anchor links based on the similarity between fusion vectors corresponding with different user nodes. However, the fusion vector ignores effects of the local type information on user nodes alignment. To address the challenge, we propose a novel type-aware anchor link prediction across heterogeneous networks (TALP), which models the effect of type information and fusion information on user nodes alignment from local and global perspective simultaneously. TALP can solve the network embedding and type-aware alignment under a unified optimization framework based on a two-layer graph attention architecture. Through extensive experiments on real heterogeneous network datasets, we demonstrate that TALP significantly outperforms the state-of-the-art methods.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3